The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures.
نویسندگان
چکیده
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.
منابع مشابه
The role of the homeodomain protein Bozozok in zebrafish axis formation.
The zebrafish bozozok (boz) gene encoding a homeodomain protein (also named Dharma/Nieuwkoid) is required during blastula stages for the formation of a complete Spemann-Mangold gastrula organizer and subsequent development of axial mesoderm and anterior neural structures. Expression of bozin the dorsal yolk syncytial layer (YSL) and overlying marginal blastomeres is activated by beta-catenin. B...
متن کاملCooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish
In vertebrates, specification of the dorso-ventral axis requires Wnt signaling, which leads to formation of the Nieuwkoop center and the Spemann organizer (dorsal organizer), through the nuclear accumulation of beta-catenin. Zebrafish bozozok/dharma (boz) and squint (sqt), which encode a homeodomain protein and a Nodal-related protein, respectively, are required for the formation of the dorsal ...
متن کاملAntagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation.
During zebrafish development, zygotic gene expression initiated at the midblastula transition converts maternal information on embryo polarity into a transcriptional read-out. Expression of a homeobox gene, vega1, is activated at midblastula transition in all blastomeres, but is down-regulated dorsally before gastrulation. Ubiquitous expression of vega1 is maintained in bozozok mutants, in whic...
متن کاملA novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish
Dharma/Bozozok (Dha/Boz) is a homeodomain protein containing an Engrailed homology (Eh) 1 repressor motif. It is important in zebrafish dorsal organizer formation. Dha/Boz interacted with a co-repressor Groucho through the Eh1 motif. Expression of a Dha/Boz fused to the transcriptional activator VP16 repressed dorsal axis formation and the expression of organizer genes but led to the dorsal exp...
متن کاملEssential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis.
During vertebrate development the dorsal gastrula or Spemann-Mangold organizer orchestrates axis formation largely by limiting the ventralizing and posteriorizing activity of bone morphogenetic proteins (BMPs). In mouse and Xenopus laevis, genes encoding the zinc finger transcriptional repressor Prdm1/Blimp1 (PR domain containing 1, with ZNF domain; previously named B lymphocyte-induced maturat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 7 شماره
صفحات -
تاریخ انتشار 1999